An Approach to Active Spatial Data Mining Based on Statistical Information

نویسندگان

  • Wei Wang
  • Jiong Yang
  • Richard R. Muntz
چکیده

Spatial data mining presents new challenges due to the large size of spatial data, the complexity of spatial data types, and the special nature of spatial access methods. Most research in this area has focused on efficient query processing of static data. This paper introduces an active spatial data mining approach that extends the current spatial data mining algorithms to efficiently support user-defined triggers on dynamically evolving spatial data. To exploit the locality of the effect of an update and the nature of spatial data, we employ a hierarchical structure with associated statistical information at the various levels of the hierarchy and decompose the user-defined trigger into a set of sub-triggers associated with cells in the hierarchy. Updates are suspended in the hierarchy until their cumulative effect might cause the trigger to fire. It is shown that this approach achieves three orders of magnitude improvement over the naive approach that re-evaluate the condition over the database for each update, while both approaches produce the same result without any delay. Moreover, this scheme can support incremental query processing as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial modelling of zonality elements based on compositional nature of geochemical data using geostatistical approach: a case study of Baghqloom area, Iran

Due to the existence of a constant sum of constraints, the geochemical data is presented as the compositional data that has a closed number system. A closed number system is a dataset that includes several variables. The summation value of variables is constant, being equal to one. By calculating the correlation coefficient of a closed number system and comparing it with an open number system, ...

متن کامل

Clustering Algorithm for Spatial Data Mining: An Overview

Spatial data mining practice for the extraction of useful information and knowledge from massive and complex spatial database. Most research in this area has focused on efficient clustering algorithm for spatial database to analyze the complexity. This paper introduces an active spatial data mining approach that extends the current spatial data mining algorithms to efficiently support user-defi...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

STING+: An Approach to Active Spatial Data Mining

Spatial data mining presents new challenges due to the large size of spatial data, the complexity of spatial data types, and the special nature of spatial access methods. Most research in this area has focused on efficient query processing of static data. This paper introduces an active spatial data mining approach which extends the current spatial data mining algorithms to efficiently support ...

متن کامل

Developing a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information

With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Knowl. Data Eng.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2000